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A Theory of Brittle Creep in Rock under Uniaxial Compression

D. M. Crubpen?

Department of Geology, Imperial College, London, United Kingdom

Scholz’s theory of brittle creep is rejected. A new theory based on Charles’s theory of the
subcritical growth of pre-existing cracks in the specimen by stress-aided corrosion is put
forward. It is a successful explanation of new experiments on the creep of Pennant sandstone
and Carrara marble under uniaxial compression at room temperature. .

INTRODUCTION

Many creep experiments on rock under ecom-
pression were conducted under conditions where
the specimen is brittle, that is, it fractures at
small strains with loss of cohesion between the
fracture surfaces.

Brittleness has certain implications. Pratt
[1967] has pointed out that, for a material to
be able to undergo a general deformation, ‘there
must be a sufficient number of independent
slip systems, distributed homogeneously and
able to interpenetrate, with enough mobile dis-
locations on them to accommodate the applied
strain rate.” At least one of these conditions is
not fulfilled for most rocks at room tempera-
ture.

For the rocks to be capable of a general
deformation the component minerals should be
deformable. Obhserved slip syvstems for rock-
forming minerals have recently been compiled
by Handin [1966] and Watchman [1967]. Data
on caleite have been added by Santhanam and
Gupta [1968]. Calecite and quartz are the two
minerals. that have been most intensively
studied, and in neither mineral was there appre-
ciable dislocation mobility at room tempera-
ture.

In general, deformation by crystal twinning
or shp is inzensitive to confining pressure. Only
caleite, marble, and halite have been reported to
show stress-strain curves insensitive to confining
pressure [Paterson, 1967]. Deformation in other

1 Now a post-doctorate fellow at Iliot Lake
Laboratory, Mining Research Centre, Mines
Branch, Department of Energy. Mines and Re-
sources, Elliot Lake, Ontario.

Copyright © 1970 by the American Geophysical Union.

rocks can be supposed to be cataclastic. The
increasing ductility of rocks with increasing
confining pressure is due to the inhibiting of
fracture propagation [Pratt, 1967]. Murrell
[1965] has shown that the brittle-ductile transi-
tion observed in rocks occurred when the stress
required to propagate a crack rose to the stress
required to overcome sliding friction on the
crack. Other features of the stress-strain eurves
of rocks are also adequately explained on the
assumption that the rock is a perfectly elastic
body containing an array of pre-existing cracks
[Walsh and Brace, 1966].

This paper therefore develops a theory of
creep in brittle materials based on the assump-
tions that (1) dislocation motion is negligible,
and (2) the material contains pre-existing
cracks. )

Scrorz’s THEORY OF BriTrLE CREEP

It seems that only one theory, that of Scholz
[1968], has been developed specifically to de-
seribe ereep in brittle rock. It is reviewed briefly
below and is shown to be unsatisfactory.

Scholz suggested that a creep specimen could
be considered as a large number of small homo-
geneous regions (elements) that undergo static
fatigue according to equation 1,

t; = (1/a) exp [((B/KT) + b(F. — F.,)] (1)
where a and b are constants. ¥ is the activation
energy of the corrosion reaction that leads to
statie fatigue. F, is the instantaneous failure
stress of the element, and F, is the stress on the
element causing failure at ¢,, the mean: fracture
time.

Two further assumptions were necessary;
as each element fails, it contributes an amount
v to the axial strain, and each region acts
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independently and only fails once. Scholz de-
rived the theory for volumetric strains but he
commented [Scholz, 1968, p. 3299], ‘v can also
be considered to be the increment of axial or

“lateral strain.’

If P(F,), the transitional probability of frac-
ture at a stress F,, does not vary with time, the
probability P that an element will fracture in
the next time interval dt after a time ¢ under
stress I, is given by

P = P(F,) exp [—P(F,){] di

and this leads to

)

P(F,) = 1/4 3)

Substituting equation 3 in equation 1 gives

P(F.) = a exp [—(E/KT) — b(F,.— Fo)] (4)

. If N(F,, t) is the number of elements under
stress F, at time ¢, then the probability of one
of these elements failing in the subsequent time
interval dt is

J(F) = N(F,, )P(F.) dt (5)
d[N(F,, 0)]/dt = N(F., )P(F.)  (6)

The axial creep rate is then
b=o [ NG, 0P aF. ()

Integration of equation 6 from zero to time ¢
gives

N(Fa) t) = N(Fa; 0) exp [—P(Fa)t]

®
Differentiation of equation 4 leads to
d(P(F,) = —b P(F,) dF, o .

Assuming that the initial distribution, N (F,,
0) is uniform in the interval zero to F,, and is
zero outside it, then N (F,, 0) = N. Equation 7
can then be written

Fa

é = oN P(F,) exp [—P(F.){] dF,
’ (10)

Fm
= N/D) [ e =PRI a(P(R )
The integration of equation 10 leads to

é = vN/bt (11)

D. M. CRUDEN

Scholz’s contribution, based on the assump-
tion represented by equation 1, comprises two
statements:

tr = c exp [b(F,, — F,)] (12)

t; = d exp (B/KT) (13)

Equation 12 described the static fatigue of the
elements at constant temperature; equation 13
described their static fatigue at constant stress.
Scholz suggested that equation 12 could he
verified by experiments on the static fatigue
of homogeneous specimens of silicates such as
glass.

CriTicisM oF ScHOLzZ'S THEORY

Scholz, then, has assumed that a creep speci-
men is composed of a number of elements of the
same dimensions and with similar physical and
chemical properties (that is, they all obey the
same law of state fatigue). The stress distribu-
tion in each element is assumed to be uniform,
and the elements are each stressed to different
stresses in the range from zero to the instan-
taneous compressive-strength of an element.
Under compression of the specimen, tensile
stresses are assumed to be absent.

There are immediate difficulties with these
assumptions. One of these is the definition of
the instantaneous compressive-strength of an
element. Fracture of bodies under compression
is invariably attributed to tensile stresses at
cracks and other stress concentrations within
the body. Scholz [1968, p. 3298] was clear, how-
ever, that there are no tensile stresses within
the specimen; it is thetefore difficult to envisage
the occurrence of a fracture.

Notice, also, that the stress distribution
within the specimen is specialized. If the stress
distribution within the elements is uniform,
then their boundaries will be free of shearing
stresses, for instance. Scholz has not discussed
what arrangement of the elements would pro-
duce this stress distribution. However, if the
elements are to have perfectly smooth margins
to eliminate shearing stresses, then the specimen
may not cohere.

Scholz’s theory can also be ecriticized for the
form of equation 12. Taking logarithms of equa-
tion 12, : :

log t; = logc 4 b(F, — F,)

(14)
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From equation 14, a plot of the logarithm of
the time to failure of the faticue specimen
against the applied stress should therefore be
linear.

The three main groups of data that Scholz
quoted, Charles [1959], Mould and Southwick
[1959], and Glathart and Preston [1946], were
collected to determine the relationship between
F, and t,. All these authors displayed the data
on F, — log t, plots. To connect data collected
under similar environmental conditions, they
drew best-fit curves, not straight lines, through
the data..The curves were generally concave
upwards.

Glathart and Preston [1946, p. 180] explicitly
rejected equation 12: ‘Baker [Baker and Pres-
ton, 1946] adopted the rather natural method
of plotting (F. against log ¢;) and obtained very
definitely curved-lines, the eurvature being more
obvious because of his longer range of time
intervals” They reported that the data were
adequately explained by equation 15

log t;, = —a + b/F, (15)

Mould and Southwick [1959] considered four
proposed static-fatigue laws to explain their
data and that of Glathart and Preston [1946].

In addition to equation 15, they tried equations
16, 17, and 18.

log t; = a — (b/F,) — log F, (16)

which was suggested by Stuart and Anderson
[1953],

log t; = —a + (b/F.)) (17)
from the work of Elliott [1958], and

log t; = —a — blog F, (18)

where a and b are positive constants (though
not the same constants in each equation). Equa-
tions 15 to 18 are predicted by various models
of the corrosion process at the crack tip.

Equation 18 was the only static-fatigue law
‘in complete agreement with the data obtained
in the study’ [Mowld and Southwick, 1959, p.
5917.

Charles [1958] reported that his data were
well fitted by equation 18.

Unfortunately the full experimental data
have not been published by any of the authors,
and the graphical representations are too small
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to describe the data accurately. Charles con-
ducted tests on groups of soda-glass specimens
at the same pre-set stress. He then selected
the mode of the logarithm of the time to failure,
and plotted it against the logarithm of the
stress.

It is doubtful whether the stress in the other
two groups of experiments was sufficiently
closely controlled to allow it to be treated as an
independent variable. Notice, also, that ‘aver-
ages’ of the times to failure of the groups of
specimens were plotted. Because the averages
were unidentified, it is probable that they are
arithmetic averages of the times to failure. The
form equation 18 would require that the arith-
metic averages of the logarithms of the times to
failure be plotted against the logarithm of the
stress.

Thus the fit of various functions to the statie-
fatigue data remains a matter of opinion, but
the weight of evidence seems to favor equa-
tion 18 over equation 12. Charles’s theory of
static fatigue might form a more satisfactory
basis for a theory of brittle ereep than that of
Scholz [Chagles, 1958].

CHARLES's THEORY OF StaTIC FATIGUE

To provide background for this theory, it will
be necessary to review very briefly the data on
static fatigue of silicates, the principal rock-
forming material. )

Charles and Gurney and Pearson demon-
strated that static fatigue in glass was negligible
in a vacuum. It has also been shown that vae-
uums reduce the effects of static fatigue on ba-
salt [Krokosky and Husak, 1968], on ceramics
[Baker and Preston, 1946], on sintered alumina
[Pearson, 1956], and on fused silica-rods
[Le Roux, 1965; Hammond and Revitz, 1963].
Charles [1958], Schoening [1960], and Gurney
and Pearson [1949] demonstraied that static
fatigue of glass was accelerated by high concen-
trations of water vapor. Le Rouxr [1965] dem-
onstrated the same effect of water vapor in the
fatigue of fused silica; Gurney and Pearson
showed that the presence of carbon dioxide in
the surrounding environment accelerated fatigue
of glass. These studies show that the fatigue
of a wide range of brittle materials is dependent
on the ambient environment.

The common hypothesis of these experiments
was that static fatigue is due to stress-aided
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corrosion at the tips of microeracks in the speci-
men. This causes the eracks to lengthen. After
a period of time under a sustained tension, a
crack reaches a critical length [Jaeger, 1962, p.
85] and propagates unstably, causing fracture
of the specimen.

Charles [1958] considered a highly elliptical
hole of major axis L in a flat glass plate subject
to an average tensile-stress S, in a direction
perpendicular to the major axis of the crack.
He suggested

L, = j(8.) + & (19)

where I, is the velocity of the crack in the z
direction. S, is the tensile stress at the tip of the
crack tangential to the crack surface; & is the
corrosion rate at zero tangential stress. Suppose

1(82) = e(8./8:.) (20)
where 7 is a positive constant, ¢ is the maximum
velocity of the crack, and S., is the tensile
strength of the atomic bonds at the erack tip. As

S./8, = 2(L/H)'* (21)
8../8, = 2(L../0"* (22)

where 7 is the curvature at the crack tip, L., is
the length at which occurs the critical stress
S.. for rupture of bonds at the erack tip. Equa-
tions 21 and 22 are derived from the theory of
stress concentrations around holes in perfeetly
elastic bodies [Jaeger, 1962, p. 85].

Substituting equations 20 and 21 in equation
19 gives equation 23, ‘

L, = e(L/L)"" + & (23)

Charles suggested that, if static fatigue is to
take place, stress-activated corrosion must occur
at a much greater rate than stress-free corro-
sion. Hence the crack would grow with constant
curvature r until it reaches its eritical length
L,,. If stress-free corrosion were as important
as stress-activated corrosion, the crack growth
would occur with inereasing radius of curvature,
and the stress concentration might be seriously
reduced.

The corrosion rate at zero stress & can there-
fore be neglected in equation 23 by comparison
with the stress-dependent corrosion rate.

The temperature dependence of crack growth
can be introduced by the assumption that corro-
sion is a rate process with an activation energy

D. M. CRUDEN

A. The experimentally determined activation
cnergy of the process below 150°C is close to
that for the diffusion of sodium atoms in glass.
Charles suggested that the sodium atoms cata-
lyse the hydrolysis of the oxygen-silicon bond
in glass by creating free hydroxyl ions. Equa-
tion 23 can be written

L, = B(L/L.)"* exp (— A/KT) (24)

Integrating equation 24 with respect to time
gave equation 25,

Ley o
f dI(L/L.)™""”

Lo

ty
= f B exp (—A/KT) at
0

[2L../(n — D)(L../L)™ 27 — 1)
= Bexp (—4/KT)t, (25

When n and t, are large, equation 25 can be
written,

[2L.,/B(n — 2)]

“exp (A7 KT)(Ler/Lo) """ = 1, (26)
Taking logarithms of equation 26,
log t; = (n/2) log L., — log D (27)

where

D = L," ) B/2)(n — 2) exp (A/KT)

Equation 22 ean be rewritten as equation 28,

L., = r8..°/48, (28)
Substituting equation 28 in equation 27,
log t; = —n log S, — log D’ (29)
where

D" = (r8.,’/9™"*- D

Equation 29 gave the static-fatigue Jaw (equa-
tion 18). The parameter 7 can be determined
from the slope of a log t, — log S, plot. Charles
[1958] reported a value of about 16.

The growth of suberitical cracks under ten-
sion has now been directly observed in glass
microscope slides [Wiederhorn, 1967] and in
sapphire [Wiederhorn, 1968]. ,

It was found that the growth of a crack can
be divided into two stages: a stage where crack
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:perimentally determined activation motion is relatively slow, and a stage of cata- Because all Charles’s experiments on static .
the process below 150°C is close to { strophic motion initiated when the crack is long  fatigue were performed on specimens under
e diffusion of sodium atoms in glass, i enough to satisfy the Griflith criterion for erack  bending or uniaxial tension, his model of the :
reested that the sodium atoms cata- ! initiation. . : process was adequate to deseribe his results.
vdrolysis of the oxygen-silicon bond | The time dependence of static fatigue is con- Hoek has confirmed empirically the Griffith
- creating {ree hydroxyl ions. Equa- trolled by crack growth in the first region. The  criterion for fracture initiation from open cracks
1 be written time taken to traverse the other region is in glass plates in uniaxial compression. In a
! negligible by comparison. modified form, to allow for friction between
3(L/ L.,)"* exp (— A/KT) (24) f Wiederhorn’s data on the stress dependence the crack surfaces, the criterion also applies to
ing equation 24 with respect to time |  of crack growth in glass in the first region can be closed .cracks. The behavior of the propagating
ion 25, replotted on double logarithmic coordinates, crack in compression is much more complex
log . — log P, which is equivalent to assuming a  than in tension. = ;
L stress dependence of the form L = CPr. Taking B.T(ICC and Bombolalis _[]963] reported ex- ’
4 logarithms, periments on open cracks in glass plates under
5 . uniaxial compression. At the ecritical stress,
- f B exp (— A/KT) di log L = log C + n log P branch fractures propagated from the ends of
? The data seem to be adequately explained by t'].le c1:acks fmd becarf}e g ‘.“th. e
- L.,/ L) = 1] this relationship. Indeed, compared to the ({Jrectloil B ORIIEEAION - ¢ v wRGE i e
exponentiall relatisnship' I = A &xp (BD) tion was attained further erack growth stoppe'd, :
=0 S5 (= 4/KD)1, (25) suggested by Wiederhorn [1968], the scatter of ;1ppa,'rcntly bccapse of the'decrease oF tease s
nd t, are large, equation 25 can be the data is reduced. A more detailed analysis stres.s-concent.r o0 at.the tip of th.e erack ..
chirnes he justiel gies mineais] Sahies of. consx‘dcrable increase in compressive stress is
and P were not given and P has a small range. requn'e,d L adqltlonal growth of these
— 2)] The parameter n can be determined approx- BERGkE: B.race, Rauting, s S‘cholz [1866]
U /KT)(L.,/ L™ = 1 (26) imately from the slope of the fitted line and has Tefoc’r to shisshqpiae bl eveii a8 rack Bgren-
el 5 a value of about 19. e )
arithms of equation 26, The agreement between Wiederhorn’s data Presxfmably, the et’fec‘t of ten'SHe stress at the
and that of Charles [1958] for the value of n for crack tips at the atomic leve].ls to §tretch the
= (n/2) log L., — log D (27) glass is reasonable, particularly as they were bonds between the atoms allowing easier passage
working on different glasses. Therefore the main to diﬂ?using sodium ions .and hence increasing
. ) assumption of Charles’s theory is plausible. There c‘orf‘o&?n rates. .C()lnpf'tasﬂs'l\'e stress at the crwk
) (B/2)(n — 2) exp (A/KT) seems little point in using the more sophisticated tips  will mlnl)x.t corrosion, and t.he SEeSS-
T versions of Charles’s model for glass under dep('endent cﬁ(“)rrosmn rate for compressive stre'sses
1 tension [Wiederhorn, 1967] while there is no  May be v]e» than the corrosion rate at zero
Lo = 78, /48, (28) experimental work on subcritical crack growth Stress. Under t'h(’“". conditions, crack growth
; 4 T in glass under compression. may result in the elimination of the stress con- g
1g equation 28 in equation 27, centration. g
e s R B Lo (29) Taxr EFFE?T oF Un1ax1an, CoMPRESSION Jacger has reviewed the general problem of
| . i The extension of Charles’s theory to the - stress concentrations around holes in a perfectly
growth of cracks under uniaxial compression elastic medium.
; e involves some problems with the stresses at the Consider an elliptical hole of major axis «
D" = (8., /4 D crack margins. and minor axiz b in an infinite, perfectly elastic :
29 gave the static-fatigue law (equa- The Griffith criterion for the initiation of  plane. The solution [Jaeger, 1962, pp. 198-199] ;
The parameter n can be determined crack propagation does not predict the be- for the stresses used elliptical coordinates, x = E

ope of a log t, — log S, plot. Charles
orted a value of about 16.
wth of suberitical eracks under ten-
1ow been directly observed in glass
. slides [Wiederhorn, 1967] and in
Wiederhorn, 1968]. .
ound that the growth of a crack can
into two stages: a stage where crack

‘havior of a propagating crack. Wells and Post

[1958] have shown that a propagating crack
under uniaxial tension in a direction normal to
its direction of propagation will extend its own
plane to a surface boundary. This result has
been confirmed experimentally by Brace and
Bombolakis [1963] and by Hoek [1965] for
cracks in glass sheet.

S o b e e el T

cosh z cos u, ¥ = ¢ sinh 2z sin u; then a = ¢
cosh &, b = ¢ sinh 2z, and the hole is bounded
by z = 2, The plane is subject to stress P, at
infinity inclined to the x axis (which lies along
the major axis of the ellipse) at an angle .

The tangential stress S, at the boundary ol
the hole is, according to Jaeger [1962, p. 199,
eq. 29],
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Pi[2ab + (a* — b°) cos 2a — (a + b)* cos 2(a — w)]

S, =

tensile stresses are negative.

The stress at the erack tip is given by equa-
tion 30 with » = 0. For a flat crack, a is much
greater than b. Then, equation 30 can be
writien as equation 31,

8, = (P,/b)(a — (b + a) cos 2a) (31)

LEquation 30 shows that if P, is tensile, the
stress at the erack tip is tensile except where a
is very close to zero; that is, when the major
axis of the crack is nearly parallel to the ap-
plied tension. If P, is compressive, S, is com-
pressive except when « is very close to zero.
The maximum value of the tensile stress at the
crack tip is P, (1 + 2a/b) when P, is tensile
(¢ = 90°) and P, when P, is compressive
(a=0)- -

When P, is compressive and « = 0, notice
that the tensile stress at the erack tip is inde-
pendent of the form of the crack. Unless P,
approaches the tensile strength of the atomic
bonds at the erack tip, the crack cannot propa-
gate catastrophically.

Hoek [1965, p. 16] pointed out that, while
the maximum tensile stress tangential to the
crack surface of flat cracks occurred near the
crack tip, it did not occur at the crack tip. He
simplified equation 30 by assuming that = is
small, and b is small compared to a [Hoek,
1965, appendix 1]. By differentiating the re-
sulting expression with respect to u, Hoek was
able to show that the maximum tensile stress
S, near the crack tip is given by

Sizo = Py(sin’ @ = sina) 2z, = b/2a (32)

When P, is compressive, the negative sign in
equation 32 is appropriate; S, will always be
negative (tensile) when P, is compressive, ex-
cept when sin @ = 1 or 0, then S, is indeter-
minate. Notice that, as the positive sign in equa-
tion 32 should be used when P is tensile, S, is
always tensile and considerably larger than its
value when P, is compressive.

Hoek’s approximation leads to errors when «
is close to zero or 90°. This can be seen by com-
paring equation 32 with equation 31, (which is
exact) or from the predicted positions of S,.

@+ b — (" — b) cos 2u

(30)

These are given by equation 33 [Hoek, 1965,
appendix 1].

V, = —b/2a(tan a =+ sec «) (33)

The errors arise because some products of
b and trignometric functions of a removed by
the simplification of equation 30 are not neg-
ligible when the trigonometric functions take ex-
treme values. '

A more elaborate analysis than Hoek’s is
required to determine the exact situation. It
will not be attempted here. Instead, notice that
symmetry considerations suggest that the maxi-
mum tensile stress is at the erack tip when the
crack major axis is parallel or perpendicular to
the prineipal stress, and that equation 33 sug-
gests that, in other positions, the maximum
tensile stress is at some distance from the crack
tip.

The situation is more complex when the crack
is closed. Hoek [1965, p. 24] used the same
approximations as he made in the case of open
cracks to show that on MecClintock and Walsh'’s
hypothesis of the behavior of closed cracks,

Sz, = Py sin (cosa — m sin a) (34)

where m is the coefficient of friction on the
erack surface. The stress.S, is tensile for values
of cos a greater than m sin «. Taking m to be
equal to one, closed cracks inclined at more
than 45° to P, will not, then, grow in uniaxial
compression.

A NEw THEORY OF BRITTLE CREEP

We now use this discussion of stress distribu-
tion around cracks and Charles’s theory to ex-
plain brittle creep in uniaxial compression.

Suppose that a suberitical crack in uniaxial
compression extends in its own plane by stress
corrosion due to the tensile stress near the crack
tips, and that when it reaches a critical length,
it propagates in the manner described by Brace
and Bombolakis [1963].

This sequence may seem less plausible than
assuming that the crack grows along the path
of a hypothetical branch fracture. However, the
alternative leads the crack to a stable configura-
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cos 2u (30)

e given by equation 33 [Hoek, 1965,
1]

7, = —b/2aftan a £ seca) (33

‘rors arise because some products of

ignometric functions of a removed by
lification of equation 30 are not neg-
ﬁen the trigonometric functions take ex-
lues.
e elaborate analysis than Hoek’s is
to determine the exact situation. It
e attempted here. Instead, notice that
v considerations suggest that the maxi-
sile stress is at the crack tip when the
1jor axis is parallel or perpendicular to
sipal stress, and that equation 33 sug-
at, in other positions, the maximum
ress is at some distance from the crack

tuation is more complex when the erack
. Hoek [1965, p. 24] used the same
hations as he made in the case of open
» show that on MecClintock and Walsh's
sis of the behavior of closed cracks,

(34)

@ is the coefficient of friction on the
rface. The stress S, is tensile for values
' greater than m sin «. Taking m to be
» one, closed cracks inclined at more
Y to P, will not, then, grow in uniaxial
sion.

, = Py sin (cosa — msin a)
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tion without giving rise to any event that could
cause the microseismic emission commonly ob-
served in brittle creep. The principal contribu-
tion to creep strain comes from strains and
displacements about propagating cracks. Once
these cracks have propagated, they are stable
or ‘erack hardened.

Sack [1946] has shown that results for
stresses around flat eracks in two dimensions
can be extended naturally to three dimensions,
to flat cracks with a cirenlar plan. These cracks
have been termed ‘penny-shaped’ eracks. The
maximum tensile stress on the crack margin
lies in the plane of the minimum and maximum
principal stresses and differs only by a constant
from the value predicted by equation 30 for
cracks in two dimensions.

Suppose there are M (L, «) dL cracks in the
creep specimen with lengths at zero time be-
tween L, and L, + dL at angles to the principal
stress between « and « + da. If each crack
caused a strain increment v on propagating, the
total strain de due to those cracks is M(L, «)
vdL. The time ¢, for a crack length L, to grow
to its critical length L., iz given from equation
25 by

exp (4/KT)L.,""
. [2/B(n 3o 2)] Lo—‘l(n—z)/zl

ly

Il

(35)
1, = ELO—[(H—Z)/'H

defining E.
Similarly, the time (¢, — dt) for a crack of
length (L, + dL) to grow to L., is given by

(ty — di) = E(Lo + a0)~' "™ (36)
Substracting equation 36 from equation 35,
dt = ELQ"I(D-Z)/ZI

1= (1 + aL/L)]' P (37)

If dt and dL are small and n is large, equa-
tion 37 can ke written

dt = [(n — 2)/2]EL,™* dL  (38)
jl‘hen the strain rate at ¢, due to the propagat-
ing cracks is de/dt, = M (L, ) v dL/dt,
de/dt, = [2/E(n — 2)]Ly"*- M(L, &)v  (39)

It would be reasonable to expect more short
cracks than long ones. Thus M(L, a) is unlikely
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to be independent of L,. Unfortunately, there is
no direct way to determine the distribution of
crack lengths.

Gilvarry [1961] suggested the basis of an
indireet method. e considered the size dis-
tribution of the fragments in the single fracture
of an infinitely extensive brittle-body due to
the propagation of internal flaws. He divided

internal flaws into three types, depending on

the number of flaws against which they termi-
nate. There are volume, facial, and edge flaws
terminating against zero, one, or two flaws,
respectively. Further classes were excluded be-
cause many of the fragments at fracture were
four-sided. Gilvarry found

g =1— exp[—(a/k) — (a/9)" — (/i)"]
where ¢ is the volume (or weight) passing a
mesh size z; k, j, i are the average spacings of

edge, facial, and volume flaws. If 2 is small, then

this may be written,
g =1— exp[—(a/k)]

and if 2 is very small,

g = (a/k) (40)
so that fragments passing the smallest mesh size
are controlled by edge flaws.

The weight dg in a size interval dz is given
by differentiating equation 40,

dg/dz = 1/k (41)

As dg = NFKL* where N is the number of
fragments in size interval, the number of frag-
ments with average size L is given by

N = 'L (42)
Equation 42 has been confirmed experimentally
by a number of workers [Gilvarry and Berg-
strom, 1961]. In particular, Hamilton and
Knight [1958] report the exponent of L to be
about —2.75 for Pennant sandstone.

Single fracture has been defined by Gilvarry
[1961] as ‘fracture by an external stress system
which is instantly and permanently removed
when the first one or few Griffith cracks begin
to propagate. Subsequent flaws are activated
by stress waves produced by propagation of
prior ones . . . .’ Assume, then, that the small-
est fragments are bounded by flaws close to
their original lengths so that the length distri-
bution of the flaws can be written,
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M@L™ = M(L, a) (43) temperature are analyzed by the structural

Substituting equation 43 in equation 39 gave
equation 44,

de/dt, = [2/(n — .2)E]L0("'.’"‘m.fll(a)v (44)

Since L, = (t,/E)™"-" from equation 33,
equation 44 can be written

de/dt; = [2/(n — 2)]
'E—z(m—-l)/(n—2)t—'(n-—zm)/(»—'n " J][(Q)U (45)

de/dt; = {[B exp (— A/KT)]*"™®

[2/(n — 24" "L, """ M()v(46)

From equation 32,

Ser = 8,°2(L.,/1)*(sin® @ — sina)- (47)

using Charles’s terminology for eracks inclined
at y to the principal compressive-stress S,. Sub-
stituting equation 47 into equation 46 gives
equation 48

theory.
Equation 48 can be written

> 2 =3 -2) ;= (n—2m)/(n-2
el = FRT SR GER )

where K is a constant, or as

de/dl = b, (49)

where b, = KS™™-2/®=2 b, = —(n —2m)/
(n — 2). Then b, is the strain rate at unit time,
and b, is a strain-hardening parameter measur-
ing the rate of decrease of the strain rate with
time.

Notice that in the trivial case where m is
exactly one, b, is minus one; this leads to a
logarithmic creep law [Scholz, 1968]. Another
consequence is that the creep rate is independ-
ent of the stress. Equation 48 also shows that,
when m is close to minus one, small changes in
m will cause large changes in the stress depend-
ence of the creep rate; the time dependence is,
however, much less sensitive. This emphasizes

de/dt; = {[B exp (—A/KT)]“"[2/(n — 2"
[8,(sin® @ — sin @)/ 8., r APV My (48)

The ereep rate of the whole specimen is the
sum of the values of equation 48 over all the
appropriate values of «. Equations 32 and 47
are inaccurate when a is near zero or ninety
degrees. Cracks at very high or very low angles
to the compressive stress will make only a small
contribution to the total strain since the tensile
stresses at their tips are comparatively small.
There is, then, probably no serious error in
evaluating the sum only between the limits of,
say, eighty-five and five degrees and equation 48
is exact when all the cracks lie within one plane.

It is not possible to predict the value of the
creep rate from equation 48 because there are
considerable uncertainties in the values of A,
B, v, and M (a). However, as equation 48 pre-
diets the time, temperature, and stress depend-
ence of transient-creep rate in the specimen, the
theory can still be tested.

THE ANALYsIs oF SoME NEw CREEP
EXPERIMENTS

In what follows, some new creep experiments
on rock under uniaxial compression at room

the special nature of the logarithmic creep law,
(de/dt) = byt™, which is transitional befween
creep laws of the form

e, — e = [b/(bs + 1] by > —1

where there is no limit to the amount of tran-
sient crecp with time, and the form

e — e = [—b/(b + DIQ — )
bz < =

where creep tends to a finite limit with time.
e,, e, are the creep strains at zero and one time
unit.

Changes in the value of m with stress are
not implausible in the structural theory, but
they lead to complications. As two experiments
at different stresses are required to calculate
value of m, and at least three are required to
test the power-law dependence of strain rate on
stress, n and m cannot be determined if m
changes rapidly with stress.

1f the strain-hardening parameter b, is con-
stant over a range of stresses, n and m can be
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estimated from the exponent of the power-law
dependence of strain rate on stress, and from the
mean value of b.. Cruden [1969] reported a
series of ereep experiments on Carrara marble
and Pennant sandstone.

The parameters of the fit of the law [equation
40] to these experiments are tabulated as a
function of the percentage of the short-term
failure stress in the uniaxial compression P, at
which the experiment was conducted (Table 1).
The fit was performed by fitting the straight
line log (de/dt) = log b, + b. log t by simple
linear regression on the assumption that the
times at which the strain rates are measured
are without error.

All the experiments are satisfactorily deseribed
by the power law of ereep above (equation 49)
[Cruden, 1969]. Scholz [1968] has suggested
that the true value of b. is —1. But none of
the experiments in Table 1 have estimates of
b, that are exactly —1. In two of the experi-
ments (on Pennant sandstone at 659 P, and
on Carrara marble at 539 P,), the possibility
that the true value of b, is —1 can be rejected
at the 19 confidence level.

In Figure 1, b. for these experiments is
plotted against stress. The strain-hardening pa-
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rameters of Pennant sandstone do not appear
to be stress dependent, but there is a significant
decrease of b, for Carrara marble below 7097
of the failure stress. Unfortunately, the experi-
ment at 539 P, showed only 10 microstrains
creep in eight days, and experiments at lower
stresses would have been beyond the acenracy
of the apparatus used.

In Figure 2, the logarithms of the strain rates
in the experiments at a time % are plotted
against the stress (on a logarithmic scale). Strain
rates are, of course, most precisely determined
by the regression at the mean of the logarithms
of the times of the observations [Hald, 1952].
The time h is the weighted mean of the means
of the logarithms of the estimaied times of
observation of the strain rates in the experi-
ments.

If the strain rates followed a power-law
dependence on stress, the data would plot on a
straight line in Figure 2. The Pennant sandstone
data fall on at least two separate straight lines,
one from experiments at 359, P, and below, and
one for those above this value.

Because the strain-hardening parameters of
the sandstone experiments are not significantly
different, the weighted mean of the values of

TABLE 1. Parameters of Fit of Creep Law de/dl = bith, to Experiments on Pennant Sandstone and
Carrara Marble

(}BP' lOg by bs dw R, w aba aby

Pennant sandstone
15 1.7%7 —0.91 1.80 719.1 40 0.034 0.20
25 2.15 —0.93 1.95 250.5 13 0.058 0.26
35 2.48 —0.97 1.50 269.3 30 0.059 0.26
45 2.61 —1.01 1.31 CH 11 0.050 0.11
50 2.42 —0.91 2.57 478.2 28 0.042 0.18
65 2.50 —0.86 2.09 607.0 29 0.035 0.18
75 3.27 —0.98 2.18 687.8 31 0.038 0.18
85 3.12 - —-0.94 2.21 180.3 25 0.070 0.35

Carrara marble

. 53 4.77 —2.11 3.03 256.9 15 0.13 0.80

64 1.67 —1.22 1.91 367.2 24 0.063 0.29
70 0.31 —0.79 1.85 34.7 8 0.081 0.33
7 2.11 —1.11 1.98 149.3 48 0.091 0.40
83 2.21 —1.02 1.46 415.4 44 0.050 0.23
86 0.77 —0.87 251 51.9 9 0.098 0.59

Notes.

log b, is the natural logarithm of b, (b, is measured in microstrains per minute).
dw is the Durbin-Watson statistic [Durbin and Watson, 1901]

w is the weighting of the regression pirameters.

oby and obs are the standard deviations of by and b,.
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Fig. 1. Plot of the value of the strain-hardening parameter b. (vertical axis) against the
percentage of short-term failure stress P, (horizontal axis). Circles indicate Pennant sand-

stone; squares indicate Carrara marble.

b, for the experiments at loads of 3.5 tons and
less can be used to write, from the structural
theory,

(n — 2m)/(n — 2) = 0.930
The exponent of the power-law dependence of
strain rate on stress can be determined by re-

gressing the logarithms of the strain rates
against the logarithms of the stresses. Then,

2n(m — 1)/(n — 2) = 0.58

These equations can be uniquely solved for
n and m since the root n = 2 can always be
discarded on physical grounds. Solution gave
n = 83, m = 122; these values are in the
ranges suggested by the theory.

Assuming that n, which measures the increase
in corrosion rate caused by stretching the min-
eral lattice, is a constant of the mineral and is
not stress dependent, values of m can be calcu-
lated for higher loads. They are listed below.

Tio T20 T

Tao

Tso “Teo T70 Tso  Teo Tioo

Fig. 2. Plot of the natural logarithm of the strain rate (vertical axis), in microstrains per
minute, against the percentage of short-term failure stress (horizonal axis) logarithmic scale.
Circles indicate Pennant sandstone; squares indicate Carrara marble.
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*
%P, m 2n(m — 1)/(n —2)!
45 0.97 —-0.079
50 1.24 0.63
65 1.44 1.16
75 1.06 0.16
85 1.22 0.58

Since m is not a constant above 35% of the
short-term failure load, the value of 2n(m — 1)/
(n — 2) does not represent the exponent of the
power-law dependence of strain rate on stress.
A rough value of this exponent is about 1.2
[Cruden, 1969]. Therefore, at about a third of
the failure strength, the exponent approximately
doubles. Evans [1958, p. 182] reported a similar
phenomenon in creep experiments on concrete.

The data on the ereep of Carrara marble are
complicated by the stress dependence of the
strain-hardening parameter b..

Another problem is the value of b, from the
Carrara marble experiment at 53% of the fail-
ure Joad. From this,

(n — 2m)/(n — 2) = 2.11
Inspection shows that if m = 0 and n = 10
the value of the right-hand side is 1.25. The
lowest reasonable estimate of b, for this experi-
ment is about —1.8. Thus, either n must be
about four with m zero, or m must be negative.

Consider the possibility that m is negative.
This implies that the number of eracks increases
with the length of the crack. At loads above
64% of the failure load, where shorter cracks
will be making their contribution to creep,
there is no need to suppose that m is negative,
and the number of eracks can then be supposed
to decrease with their length. Thus the crack-
length distribution has a maximum grouped

around the cracks that propagate early in-

transient-creep experiments at about 649% of
the failure load.

If the experiments on Carrara marble at 649
of the failure load and below are omitted from
the analysis, b, can reasonably be supposed to
be constant. The reduced body of data can,
again, be examined by regressing logarithms of
the strain rates against the logarithms of the
loads. The results are

2n(m — 1)/(n — 2) = 2.36

(n — 2m)/(n — 2) = 0.976
The equations lead to estimates of n as 98.5 and
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m as 2.16. The estimate of n is large. However,
little confidence can be placed in the mean value
of the strain-hardening parameter b.; lower
values of b, would lead to considerably lower
estimates of n.

CONCLUSIONS

The creep data thus show distinetly different
patterns of behavior for Pennant sandstone
and Carrara marble. For Pennant sandstone,
the value of b, is just greater than minus one,
and the stress dependence of the strain rates is
linear to a crude approximation. Carrara marble
shows a stress-dependent, strain-hardening pa-
rameter, and the strain rates are roughly pro-

" portional to the square of the stress.

The structural theory attributes the differ-
ence in behavior to differing corrosion reac-
tions in silicates and carbonates resulting in
different values of n and to differing crack-
length distributions. The length distribution of
cracks in the two rock types can be derived
from the calculated values of m.

The most pronounced difference between the
two distributions is the relative deficiency of
the marble in long and short cracks; the crack-
length distribution has a maximum. Brace [1964,
p. 153] suggested that the maximum erack
length in a rock sample was a function of the
grain-size distribution. Thus the clustering of
the size distribution of the cracks about a
broad maximum would appear a consequence
of the equigranular texture of the marble de-
seribed by Ramez and Murrell [1964].
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