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A. Theory of Brittle Creep in Rock under Uniaxial Compression 

D. ]\'1. CHUDEN1 

Department oj Geology, Imperial Collegc, London, Unded Kingdom 

Scholz's theory of brittle creep is rejected. A Dew theory based on Charles's theory of the 
subcritical growth of pre-existing cracks in the specimen by strcss-aided corrosion is puL 
fom·ard. It is a successful cxplnnat.ion of new experiments on the creep of P enDant. sandstonc 
and Carmra marble und er uniaxini comprcssion at room temperature. 

I",'l'HODUCl'J o~ 

]vIany creep experimenls 011 rock under COUl

pression were conducted under conditions where 
the specimen is brittle, thal is, it fractures at 
~mall strains with loss of cohesion between the 
fracture surL1ces . 

Brittleness has certain implications . Pratt 
[1967] has pointed out that, for a. material to 
be able to undergo a general deformation, 'there 
must be a ;oufficient number of independ ent 
slip systems, distributed homogeneollsly and 
able to in terpelletrate, wi t h ellough mobile dis
locations on them to accommodate the applied 
slrain rate.' At least one of these conditions j " 

not fulfill ed for most rocks at. room tempera
ture. 

For the rocks to be c:!pable of a general 
deformation the component. minerals should be 
deformable. Ob.5eryed slip s~'5tems for rock
forming minerals have recently been compiled 
by Hamlin [1966] and lVatclmw.n []967]. Dat:! 
on calcite h:!Ye becn added by Santhanam and 
Gupta [1958]. Calcite and qu:!rtz are the two 
minerals , that have been most intcnsh-ely 
studied, and in neither mineral was there appre
ciable di"location mobility at room tempera
ture. 

In gcneral, deformation b~" crY5tal twinning 
or slip is inscnsitive to confining pre5SllI'e. Only 
raleite, marble, and h:!lit c ha\"c been reported to 
show stress-sfrnin curves in;;ensitiye to confining: 
pressure [Paterson, ] 967]. Deformation in other 

1 Now !1. post.-doctorale fellow at Etliot Lake 
Laboratory. Mining Research Ccntre, Mines 
Branch, Dcpartment of Energy. l\Iines :lDd Re
sources, Elliot Lake, Ontario. 

Copyright © 1970 by the American Geophysical Uniou . . 

rocks can be supposed to be cataclastic. The 
increasing ductility of rocks with increasing 
confining pre;;'~Ul'e is due to the inhibiting of 
fracture propagation [Pratt, 1967]. Murrell 
[1965] has shown that the brittle-ductile transi
tion observed ill rocks occuned when the stress 
required to propagate a crack rose to the stre.;;s 
required to overcome sliding friction on the 
crack. Other fe:1tures of the stress-strain curves 
of rocks are :llso adequately explained on the 
assumption that the rock is it perfectly elastic 
body containing an array of pre-existing cracks 
[Walsh and Brace, 1966]. 

This paper therefore develops It theory of 
creep in brittle materials based Oll the assump
tions that (1) dislocation motion is negligible, 
and (2) the material contains pre-existing 
cracks. 

SCHOLZ'S THEORY OF BRITTLE CREEI' 

It seems that only one theor~', that of Scholz 
[1968], has been deyeloped specifically to de
scribe creep in brittle rock. It is reyiewed briefly 
below and is shown to be unsatisfactory. 

Scholz suggested that a creep specimen could 
be considered as a large Dumber of small homo
geneous regions (elements) that undergo static 
fatigue accorrling to equation 1, 

tr = (1/ a) exp [(E/ K'l') + b(Fm - p.)] (1) 

where a and b are constants. E is the activation 
energy of the corrosion reaction that leads to 
slatic fatigue. F", is the instantaneous failure 
stress of the element, and F. is the stress on the 
clement ca.using failure at tt, the me:lI1' fracture 
time. 

1'\\'0 fu rthcr assumptions \\'ere necessn ry; 
as each element fails, it contributes an amount 
v to the axial strain, und each region !lcts 
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independently and only fails once. Scholz de
rived the theory for volumetric strains but he 
commented [Scholz, 1968, p. 3299J, 'v can also 
be considered to be the increment of axial or 

. lateral strain.' 
If P(F.), the transitional probability of frac

ture at it stress F., does not \'ary with time, the 
probability P that an element will fracture in 
the next · time interval cit after a time t under 
stress F. is given by 

P = P(F.) exp [-P(F.)t] dt (2) 

and this leads to 

P(F.) = l/t, (3) 

Subst.ituting equation 3 in equation 1 gives 

P(F.) = a exp [-(E/ K.'1') - b(Fm - Fa)] (4) 

. If N(Ji'., t) is the number of elements under 
stress Ji'. at time t, then the probability of one 
of these elements failing in the subsequent time 
interval cit is 

f(F'.) = N(P., t)P(F.) dt 

d[N(F., t)]/dt = N(Fa, t)P(F.) 

The axial creep rate is then 

l
Pft 

it = v 0 N(Fa, t)P(P.) dF. 

(5) 

(6) 

(7) 

Integration of equation 6 from zero to time t 
gives 

N(F., t) = N(P., 0) exp [-P(F.)t] (8) 

Differentiation of equation 4 leads to 

d(P(F.» = - b P(F.) dF. (9) 

Assuming that the initial distribution, N (F., 
0) is uniform in the inten·al zero to F ... , and is 
zero outside it, then N(Fa, 0) = N. Equation 7 
can then be written 

e, = vN f'· P(F.} exp [-P(F.)t] dF. 
(10) 

= (vN/b) iP

• exp [-P(F.}t d(P(F.»] 

The integration of equation 10 leads to 

i , = vN/bt . (11) 

Scholz's contribution, based 011 the assump
tion represented by equation 1, comprises two 
st,'ltements: 

I, = c exp [b(Fn. - F.}] (12) 

I, = d exp (E/ KT) (13) 

Equation 12 described the static fatigue of the 
elements at constant temperature j equation 1~ 
described their static fatigue at constant stre~s. 
Scholz suggested that equation 12 could be 
verified by experiments on the static fatigue 
of homogeneous specimens of silicates such as 
glass. 

CRITICISM Ol!' SCHOLZ'S THEORY 

Scholz, then, has assumed that a creep speci
men is composed of a number of elements of the 
same dimensions and with similar physical and 
chemical properties (that is, they all obey the 
same law of statc fatigue). The stress distribu
tion ill each element is assumed to be uniform, 
and the elemenfs are each st.ressed to different 
stresses in the range from zero to the instan
taneous compressive-strength of an element. 
Under compression of the specimen, tensile 
stresses are assumed to be absent. 

There are immediate difficulties with these 
assumptions. One of these is the definition of 
the instantaneous compressi\·e-strength of an 
clement. Fracture of bodies under 'compression 
is invariably attribu.ted to tensile stresses at 
cracks and other stress concentrations within 
the body. Scholz [1968, p. 3298J was clear, how
ever, that there are no tensile stresses within 
the specimen; it is tbei·efore difficult to envisage 
the occurrence of a fracture. 

Notice, also, that the stress distribution 
within the specimen is specialized. If the stress 
distribution within the elements is unifonn, 
then their boundaries will be free of shearing 
stresses, for instance. Scholz has not discussed 
what arrangement of the elements would pro
duce this stress distribution. However, if the 
elements are to have perfectly smooth margins 
to eliminate shearing stresses, then the specimen 
may not cohere. 

Scholz's theory ca·11 also be criticized for the 
form of equation 12. Taking logarithms of equa
tion 12, 

log I, (14) 

j. 
r 
I 
i 

I t 
~ 
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From equation 14, a plot of the logarithm of 

the time to failure of the fa.tigue specimen 
Against the applied stress should therefnre be 
linear . 

The three main groups of data that Scholz 
quoted, Charles [1959], Mould and Southwick 
[1959], and Glathart and Preston [1946], were 
collected to determine t he relationsh ip between 
F. and t r. All t hese authors displayed the data 
on F. - log tr plots. To connect data collected 
under similar environmental conditions, they 
drew best-fit cun'es, not straight lines, through 
the data . . The curyes were genera.lly concaye 
upwards. 

Glathart and Preston [1946, p. 18!)] explicitly 
rejected equation 12: 'Baker [Baker and Pres
ton, 1946] adopted the rather natural method 
of plotting (F. aga inst log t r ) and obtained very 
definitely cun·ed-lines, the curvature being more 
obvious because of his longer range of time 
in tervals. ' They reported that the data were 
adequ~tely eX1Jlained by equation 15 

logt, = -a+ b/Fa (15) 

Mould and SOll,thwick [1959] considered four 
proposed static-fatigue ra\yS to explain their 
data and that of Glathart and Preston [1946]. 
In addition to equation 15, they tried equations 
16, 17, and '18. 

log t, = a - (b/ Fa) - log Fa (16) 

which was suggested by Stuart and Anderson 
[1953], 

log t, = -a + (b/Fa2
) (17) 

from the work of Elliott [1958], and 

log t, = -a. - b log Fa (18) 

where a and b are positive constants (though 
not the !'ame constants in each equation). Equa
tions 15 to 18 are predicted by various models 
of the corrosion proce~s at the crack tip. 

Equation 18 was the only static-fatigue law 
' in complete agreement with the data obtained 
in the study' [Molild and Southwick, 1959, p. 
591] . 

Charles [1958] reported that his data were 
lYell fitted by equation 18. 

Unfortunately the full experimental data 
have not been published by any of the authors, 
and the graphical representations are too small 

to describe the data accurately. Cbrles con
ducted tests on groups of soda-glass specime;}s 
a L t he same pre-set st ress. He then selecteel 
the mode of the logarit hm of the time to failure, 
ancl plotted it against the log:irithm of the 
stress. 

It is doubtful whether the stress in the other 
two groups of experiments was sufficiently 
closely controlled to ailow it to be tre:ltecl as a~ 
independent variable. Notice, al-o, th:lt ':l\·er
ages' of the times to failure of the group- of 
specimens were plotted. Because the ayerages 
were unidentified, it is probable th:it they are 
arithmetic averages of the times to hilure. The 
form equation 18 would require that the arith
metic averages of the logarithms of the times to 
failure be plotted against the logarithm of the 
stress. 

Thus the fit of various functions to the static
fatigue data remains a matter of opinion, but 
the weight of e\·idence seems to fayor equa
tion 18 o\·er equation 1~. Charles·s theory of 
static fatigue might form a more sat isfactory 
basis for a theory of brittle creep than that ~f 
Scholz [Chac1es, 1958]. 

CHARLES'S THEORY OF STATIC F.-\TJGlJE 

To provide background for this theory, it will 
be necessary to review very briefly the data on 
static fa ligue of silicates, the principal rock
forming material. 

Charles and Gurney a.n d Pearson demon
strated that static fatigue in glass was negligible 
in a vacuum. It has also been shown that yac
Ullins reduce the effects of static fatigue on ba
~alt [Krokosky and Husak, 1968], on cenunics 
[Baker and Preston, 1946], on sintered alumina 
[Pearson, 1956], and 011 fused silica-fods 
[Le Roux, 1965; Hammond and Ret'itz, 1963]. 
Charles [195S], Schoening [1960]. and Gllrne·y 
and Pearson [19-l9] demonst r:tted that stat ic 
fatigue of glass was accelerated by high concen
trations of watc r vapor . Le R Ollx [1005] dem
onstrated thc same effect of water yapor in the 
fatigue of fused silica; Gurney and Pearson 
showed that the presence of carbon dioxide in 
the surrounding em·ironment accelerated fatigue 
of glass. These s tudies sho\\· tha t the fati~ue 
of a wide range of brittle materi:ll- is depend~nt 
on the ambient environment. 

The common hypothesis of these experiment:;: 
was that static fatigue is due to stress-aided 
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corrosion :11 the tips of lrucrocracks in the spec i
men. This eauf'CS the cracks to lengthen. After 
a. period of time under a sustained tension, a 
crack reaches a criticnl lengt.h [Ja.eger, 1963, p. 
S5] and propagntes unstably, causing fracture 
of the specimen. 

Charles [1958] considered a. highly elliptical 
hole of major axis L in a flat gla~s plate subject 
to an aYerage tensile-stress S. in a direction 
perpendicular to the major a.."is of the crack. 
He suggested 

(19) 

where L: is the velocity of tlw crack in the x 
direction. S: is the tensile stress at the tip of the 
crack tangential to the crack surface; k is the 
corrosion rate at zero tangential stress. Suppose 

(20) 

where n is a posit i"e constant, c is the ma.ximum 
velocity of the crack, and S., is tbe tensile 
strength of the at.omie bonds at the crack tip. As 

A. The experimenta.lly determined activation 
energy of the process below ] 50°C is close to 
tbat for the diffusion of sod ium atoms in glass. 
Charles suggcsted that the sodium atoms cata
lyse the hydrolysis of the m. .. ygen-silieon bond 
in glass by creating free hydroxyl ions. Equa
tion 23 can be written 

Lz = B(L/ L,,)"/2 exp (- A/ ](1') (24) 

Integrating equation 24 with respect to time 
gave equation 25, 

= {' B exp (-A/](1') ell 

[2!-cr/(n - 2)]r(L.,/ L ot'-2)/2 - 1] 

= B exp ( - ,1./ 1(T) If (25) 

When nand t, are large, equation 25 can be 
written, 

(2 i) [2Lcr/B(n - 2)] 

Serf S. = 2(L.r/rr/2 (22) 

where l' is the CUl'Yature at tile crack tip, L., is 
the length at which occurs the critical stress 
S •• for I1lpture of bonds at the crack tip. Equa
tions 21 and 22 are deriyed from the theory of 
stress concentrations around holes in perfectly 
elastic bodies [Jaeger, 1962, p. 85]. 

Substituting equations 20 and 21 in equation 
19 giyes equation 23, 

• (/ )n/2 L~ = c L Lcr + k (23) 

Charles suggested that, if static fat.igue is to 
take place, stress-actinlted corro.~ion must occur 
at a much greater rate .than stress-free corro
sion. Hence the crack would grow with constant 
curvature r until it reaches its critical length 
Lcr. If stress-free corrosion were as important 
as stress-actiyated corrosion, the crack growth 
would occur wilh increasing racliu - of curvature, 
and the stress conccntra.tion might be seriously 
reduced. 

The corrosion rate at zero stress k can there
fore be neglected in equation 23 by comparison 
with the stress-dependent corrosion rate. 

The temperatu re dependence of crack growth 
can be introduced by the assumption that corro
sion is a rate process wit.h an acti"ation energy 

. exp (A; K1')(L.'/ L o)(n-2)/2 

Taking logarithm::> of equation 26, 

(26) 

log I, = (11/2) log L., - log D (27) 

where 

D = L/'-2)/2(B/2)(n - 2) exp (A/ K1') 

Equation 22 can be rewritten as equation 28, 

Lcr = rS.,2/4S/ 
Substituting equation 28 in equa.tion 27, 

(28) 

log t, = -n log S. - log D' (29) 

where 

D' = (rS.r 2 j4)-n12. D 

Equation 29 gave the static-fatigue law (equa
tion 18). The pa.rameter n ' can be determined 
from the slope of a. log t, - log S. plot. Charles 
[1958] reported a value of about 16. 

The growth of subcritical cracks under ten
sion has now been directly observed in glas." 
microscope slides [H'iederltoTn, 1967] and in 
sapphire [lViedel'horn, 1968]. . 

It was found that the gro,,·th of a crack caB 
be di"ided into two stages: a stnge where crnck 
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motion is rclatiyely slow, and a stage of cata
"trophic motion init iated \\'hen the crack is long 
{'!laugh to sat.isfy the Griflilh criterion for crack 
initi '1tion. 

The time dependence of stlltic fa.tigue is con
trolled by crack gro,\-th in the first region. The 
time ta.kcn to traverse the other region is 
negligible by comparison. 

\Viederhorn's dala on the stress dependence 
of crack growth in glass in the first rrgion can be 
rcplotted on double logarithmic coordinates, 
log L - log P, \yhich is equivlllent to assuming a 
stress dependence of the form L = CP". Taking 
logarithms, 

log L = log C + n log P 

The data seem to be adequately explained by 
this relationship. Indeed, compared to the 
exponential relationship L = A exp (BP) 
suggested by ll'iederllOrn [196S], the scatter of 
the data is reduced. A. more detailed analysis 
cannot be justified since numerical values of L 
and P were not given and P has a small range. 
The parameter n can Le determined approx
imately from the slope of the fitted line and has 
a value of about 19, 

The agreement between \Vieclerhorn's dat.a 
and that of Charles [1958] for the yalue of n for 
glass is reasonable, particularly as they were 
working on ditlerent glasses. Therefore the main 
assumption of Charles's theory is pIau ible. There 
seems litLIe point in llsing the more sophisticated 
versions of Charles's model for glass under 
tension [TVieelerhom, 1967] while there is no 
experimental work on subcritical cmck growt.h 
in glass under compression. 

THE EFFECT OF UNIAXIAL CO:lIPHESSION 

The extension of Charles's theory to the ' 
growth of cracks uncler uninxial compression 
inyolves some problems with the stresses at the 
crack margins. 

The Griffith criterion for the initiation of 
crack propaglltioll does not predict the be

. hayior of a propagating crack. Wells and Post 
[1958] have shown that a propagating crack 
under uniaxial tension in a direction normal to 
its direction of propagation will extend its own 
plane to a surface boundary. This rcsult has 
been confirmed experimentally by Brace and 
13ombola.kis [1963] and by H oel.- [H)65] for 
cracks in glass sheet. 

Because all Cha.rles's experiments on static 
fatigue were performed on specimens under 
bending or uniaxial tension, his model of the 
process was adequate to describe his results. 

Hoek has confirmed cmpirically the Griffith 
criterion for fracture inilia.tion from open cl"llcks 
in glass pl3tcs in uniaxial compression. In a 
modified form, to nllo\\' for friction bebwen 
the crack surfaces, the criterion also applie' to 
closed cl"llcks. The behn\"ior of t.he propagating 
crack in compression is much more complex 
than in tension. 

Brace and Bombola/';is [1963] reported ex
periments on open cra{'ks in glass plates under 
uniaxial compression. At the critical stress, 
branch fract~lres propagated from the ends of 
the cracks and 'became nearly parnllel \"ith the 
direction of compression .... when this direc
tion was attaimd further crack growth stopped, 
appa.rently because of the decrcase of ten"ile 
stress-concentration at the tip of the crack . ... 
considerable increase in compressiye stress is 
required to cause additional growth of the::e 
cracks.' Brace, Paulding, and Scholz [1966] 
refer to this sequence of e\"ents as 'crack harden
ing.' 

Presumably, the elled of tensile stress at the 
crack tips at the atomic le\"el is to stretch the 
bond bct\yeen the atoms allowing easier pas;;age 
to diffusing sodium ions and hence increasing 
corrosion rate5. Compressi\-e stress at the crack 
tips will inhibit corrosion, and thc stress
dependent corro-ion rate for compreEsiye stresses 
may be Ie:::" than the corroEion rate at zero 
:::tress. Under thcse conditions, crack grO\Ylh 
may result. in the f'limination of the stress con
centration. 

Jaeger has reyie\\'cd the general problelll of 
strcss concentrations around holes in a perfE'ctl~' 
elnstic medium . 

Consider nn elliptical hole of major axis a 
and minor axis b ill an infinite, perfectly elastic 
plane. The solution rJaeger, 1962, pro 1913-1 g[rl 
for the stresses psed clliptical coordinate;:, x = 
cosh z cos ll, Y = c sinh z sin u: then a = c 
cosh x, b = c sinh z, and the hole is boundecl 
by z = z ... The planc i~ subject to stn's;; P, al 

infinity inclined to the .~ :lxis (which lics nlon~ 
the major axis of the cllip,;e) at an angle (t. 

The tangential ~tr.ess Sr at the boundary of 
the hole i~, aecordin tT to Jaeger [H)62, p. Inn, 
eq. 29], 
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S. 
P 1[2ab + (a2 

- b2
) cos 2a - (a + b)2 cos 2(a - u)] 

a2 + b2 
_ (a2 

_ b2
) cos 2u 

(30) 

tensile stresses are nega tive: 
The stress at the crack tip is given by equa

tion 30 with 1t = O. For a flat cr3ck, a is much 
greater th3n b. Then, equation 30 can be 
",ritten as equation 31, 

S" = (P1/b)(a ' - (b + a) cos 2a) (31) 

Equat ion 30 sho\\'s that if PI is tensile, the 
stress at the crack tip is tensile except where a 
is \'ery close to zero; that is, when the major 
axis of the crack is ncarly pamllel to the ap
plied tension. If P, is comprcs:: i" e, S. is com
pressive except when a is very close to zero. 
The maximum value of the t ensile stress at the 
crack tip is P, (1 + 2a/ b) when P, is tensile 
(a = 90 0

) and P, whcn P, is compressive 
(a = 0). 

'Vhen P, is compressil'e and a = 0, notice 
that the tensile stress at the crack tip is inde
pendent of the form of the crack . Unless P, 
apPl'oache:' the t ensile strength of the atomic 
bonds at the crack tip, t he crack cannot propa
gate catastrophic311y . 

Hoek [1965, p. 16] pointed out that, while 
the maximum tensile stress t angential to the 
crack surface of flat cracks occurred ne3r the 
crack tip, it did not occur at the crack tip. He 
simplified equ3tion 30 by assuming that u is 
small, and b is small compared to a [Hoek, 
1965, appendix 1]. By differentiating the re
sulting expression with respect to tt, Hoek was 
able to show that the maximum tensile stress 
S, ncar the crack tip is given by 

S,Zo = PI(sin2 a ± sin a) Zo = b/2a (32) 

Whel') p, is compressil'e, the negatil'e sign in 
equation 32 is 1PPl'opriate; S, will always be 
ncgative (tensile) when P, is compressil'e, ex
cept when sin a = 1 or 0, then S, is indeter
minate. Notice that, as the positive sign in equa
tion 32 should be used when P, is tensile, S, is 
always tensile and considerably Inrger than its 
value when P, is compressive. 

Hoek's approximation leads to errol'S when a 

is close to zero 01' 90 0
• This can be seen by com

paring equation 32 with equation 31 , (which is 
exact) or from the predicted positions of S, . 

These are given by equation 33 [Hoek, 1965, 
appendix 1]. 

v, = - b/2a(tan a ± sec a) (33) 

The errors arise because some products of 
band trignometric functions of a remo\'cd by 
the simplification of equation 30 are not neg
ligible when the trigonometric funclioll s take ex
treme values. 

A more elaborate analysis than Hoek's is 
required to determine the exact situation. It 
,yill not b~ att empted here. Instead, notice thn t 
symmetry considerations suggest that the maxi
mum tensile stress is at the crack t ip when the 
crack major axis is parallel or perpendicular to 
the principal stress, and that equation 33 sug
gests that, in other positions, the maximum 
tensile stress is at some distance from the crack 
tip. 

The situation is more complex when the crack 
is closed. Hoek [H)65, p. 24] used the 8ame 
approximations as he made in the case of open 
cracks to show that on :i'.IcClintock and Walsh '~ 

hypothesis of the behavior of closed cracks, 

S,Zo = PI sin (cos a - m sin a) (34) 

where m is the coefficient of frict ion on the 
crack surface. The stress .S, is tensile for values 
of cos a greater than m sin a. T aking m to be 
equal to one, closed cracks inclined at more I 

than 45 0 to P, will not, then, grow in uniaxial 
compression. 

A NEW THEORY OF BRITTLE CREEP 

We now use this discussion of stress distribu
tion around cracks a.nd Charles's theory to ex
plain brittle creep in uniaxial compres"ion. 

Suppose that a subcritical crack in uniaxinl 
compression extends in its own plane by stres.' 
corrosion due to the tensile stress near the cl'3ck 
tips, and that when it reaches a critical length, 
it prop3gatcs in the manner described by Brace 
and Bombolakis [1963]. 

This sequence may seem less plausible ' thnJl 
assuming that the crack grows along the pat h 
of a hypothetical 'branch fracture. However, thc 
a.lternative leads the crack to a stable configur:l-

t 



Lt- b)2 cos 2(a - u)] 
cos 2u 

(30) 

given by equation 33 [Hoek, 1965, 
1]. 
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tion without giving rise to any eyent that could 
C:lllse the microseismic emi;:sion commonly ob
,crved in brittle creep. The principal contribu
tion to creep strain comes from strains and 
displacrments about propagating crncks. Once 
these cracks have propagnted, they arc stable 
or 'crack hardened.' 

Sac/;; [1946] has shown that results for 
st resses around flat cracks in t\\'o dimensions 
('a n be extended naturally to three dimensions, 
to flat cracks with a circlllnr plan. These cracks 
11:\\'e been termed 'penll~'-shaped' cracks. The 
maximum tensile stress on the crack margin 
lies in the plane of the minimum and maximum 
principal stresses and differs only by a constant 
from the value pred ictcd by equation 30 for 
rrneks in two dimensions. 

Suppose there are lt1 (L , a) dL cracks in the 
creep specimen with lengths at zero time be
t\\'cel1 Lo and Lo + dL at angles to the principal 
stress between a and a + da. If each crack 
r:lllsed a strain increment v on propagating, the 
total strain de due to those cracks is U(L, a) 
vdL. The time t, for a crack length Lo to grow 
to its critical length L" is gi\'en from equation 
25 by 

t, = eAl) (A/ KT)L.;12 

. [2/B(n - 2)]Lo -1(n-2)/21 

I, = ELo-lln-2)/21 

defining E. 

(35) 

Similarly, the time (t, - dt) for a crack of 
Icngth (Lo + dL) to grow to L .. is giyen by 

(t, - dt) = E(Lo + dL)- 11n-2)/21 (36) 

Substracting equation 36 from equation 35, 

dt = ELo- I ("-2)/2) 

. [1 - (1 + dL/ Lo)r l (,,-2)/21 (37) 

If dt and dL are small and n is large, equa
tion 37 can r.c 1\·r:tten 

dt = [en - 2)/2]ELo-
n

/2 dL (38) 

Then the strain rate at t, due to the propagat
ing cracks is de/dt, = M(L, a) V dL/dt, 

dc/dt, = [2/E(n - 2)]Lo"12· .1[(L, a)v (39) 

Tt would be reasonable to expect more short 
cracks than long ones. Thus M (L, a) is unlikely 

to be independent of Lo. Unfortullately, there is 
no direct way to determine the dist ribution of 
cmek lengths. 

Gilvarry [1961] suggested the basis of an 
indirect method. lIe considered the size dis
tribution of the fragments in the single fracture 
of an infinitely c:-.iensiye brittle-body due to 
the propagat ion of internal Haws. He divided 
internal flaws into three types, depending on ' 
the number of flaws against which they termi
nate. There are volume, facial, and edge flaws 
terminnting aga.inst zero, one, or two flaws, 
respectively. Further classes were excluded be
cause many of the fragments at fracture were 
four-sided. Gilvarry found 

g = 1 - exp [- (x/k) - (x/N - (X/i)3] 

where g is the volume (or weight) passing a 
mesh size x; k, j, i are the average spacings of 
edge, facial, and yolume fla\\'s. If x is small, then 
this may be written, 

g = 1 - exp [-(x/k)] 
and if x is \'ery small, 

g = (x/le) (40) 

so that frngments passing the smallest mesh size 
are controlled by edge flaws. 

The weight dg in a size interval dx is given 
by differentiating equation 40, 

dg/dx = l/k ( 41) 

As dg = Nk'V where N is the number of 
fragments in size interval, the number of frag
ments with average size L is given by 

N = k"L- 3 (42) 
Equation 42 has been confirmed experimentally 
by a number of workers [Gilvarry and Berg
strom, 1961]. In particular, Hamilton and 
Knight [1958] report the exponent of L to be 
about -2.7fJ for Pennant sandstone. 

Single fracture has been defined by Gilvarl'Y 
[1961] as 'fracture by an externa l stress system 
which is instantly and permancntly remo\'ed 
when the first one or few Griffith cracks begin 
to propagate. Subsequent flaws are acti\-ated 
by stress waves produced by propagation of 
prior ones .... ' Assume, then, that the small
est fmrrments nre bounded b\' fla\\'s closc' to o . 

their originnl lengths so that the length distri-
bution of the flaws can be written, 
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M(ex)L-m = M(L, ex) (43) 

Substituting equlltion 43 in equntion 39 gave 
equation 44, 

de/dt, = [2/(n - .2)E]Lo(n-2m)/2 111 (ex)v (44) 

Since Lo = (t, / Et[#,n-'lJ from equation 35, 
equlltion 44 cnll be written 

tempcmlure are analyzed by the structural 
theory. 

Equntion 48 can be written 

de/ dt = [( Sv 2.( .. - I)/(n-2) C(n-2m)/(n - 2) 

where Kia constant, or as 

de/ dt, = [2/(n - 2)] 

. E-2(m-I)/(n - 2) t- (n - 2 .. )/(.-2) . Jlf(ex)v 

de/ dt, = {[E exp (- A/ ]{1')r 2m
-

2l 

where b, = Ks:",m -1)/(" - '>' b, = - (n -~m)/ 

(n - 2). Theil b, is the stra in n,le at ullit timr, 
(45) and b, is a strain-hardening parameter measur

ing the rate of dec rease of the strain rate with 
time. 

From equation 32, 

using Charles's t emlinology for cracks inclined 
at y to the principnl compres~ive-strc&; SY' Sub
stituting rquation 47 into equation 46 gives 
equntion 48 

Notice tha t in the trivial case where 'In i, 
exactly one, b, is minus one ; this leads ·to a 
log:uithmic .creep law [Scholz, 19G ]. Another 
consequence is that the creep rate is independ
ent of the stress. Equa tion 4 also shows that, 
when In is clo::e to minus one, smnll changes ill 
In will CQuse large changes in the st reii.~ depend
ence of the creep rate ; the time dependence i ~, 

ho\\'ever, much less sen5itive. Thi:; emphasize,; 

I[B exp (- A/ 1C1')f2m
-

2
) [2/(n - 2) t)"-2m 

[S ( . 2 . )/8 1/2]2"(1IO - 1)} 1/(,,-2) 'I( ) 
• v S111 ex - sm ex cr·r J I Y V (48) 

The creep rate of the "'hole specimen is the 
sum of the Yalue£ o f equntion 48 OWl' all the 
appropriafe vnlllP of a. Equa ti ons 3:2 nne! 47 
are inaccurate ,,,hen a is ncar zero or ninety 
degrees . Cracks Qt yer~' high or very low nngles 
to the comprco:siye stre,;s will ll1nke only a smnlI 
contribution to the total st rain ~ince the tensile 
stresses at their tips nre cOIll]Jarat iYely small. 
There is, then, probnbly no serious error in 
evaluating the sum only bet ween the limits of, 
say, eighty-fi"e and fh'e degrees nnc! cquntion 48 
is exact when all t he cracks lie wi thin one plane. 

It is 'not possible to predict the yalue of the 
creep rate from equation 48 becausc there are 
considernble uncertainties in the ynlues of A, 
B, v, and .II (a). HO\\'eycr, as equlltion 4 pre
dicts the time, temperature, and stress depend
ence of transient-crrep rate in the ,;pecimen, the 
theory call sti ll be t rsted. 

TliE A:-';ALY:;I::; OF SO)'IE ::\1-:\\' CREEP 
EXPEHDIE:\TS 

In what follows, some new creep experiments 
on rock under uniaxial compression at room 

the special nature of the logarithmic creep law, 
(de/dt) = bit-', which is trnnsitional between 
creep laws of th e form 

[b /(b + 1)] tb .+ 1 
e, - eo = 1 2 

where there is no limit to the amount of trall
sirnt creep with time, and the form 

e, - el = [- bl /(b2 + 1)](1 - t
bH1

) 

b2 < -1 

where creep tends to a finite limi t with time. 
eo, el li re the crerp strains at zero and one tim e 
unit. 

Chnnges in the \'alue of m with stress are 
not impbu:iiblc in the st ructural theory, but 
they lead to complications. As two experimellt~ 

nt different stresses are requi red to calcubte :t 

\'alue of m, and nt least three are required to 
test the power-law dependence of strain rate on 
stress, nand m. cannot be determined if /II 

changes rnpidly with stress. 
If the st rain-hardening parameter b, is con

stant over a rnngp of st resses, nand m can he 

I, 
11 

,,' 
tl 
:1 

II 

T 
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48 can be written 

'I constant, or as 

(49) 

KSi',(m-ll/(n-'>, b, = -(n -2m) / 
hen b, is the strain rate at unit time, 
~train-harclclling parameter measur

e of cleCl'ease of the strain rate with 

hat in the triyial case where m i;:: 
, b. is minus one; this leads to it 

-, cr~ep Ia,1\' [Scholz, 19G8]. Another 
e is that the creep rate is indrpencl
stre"s. Eqllation 4 also sho\\'s thnt, 
close to minus one, mall changes in 

'e large changes in the stress depend
~ creep rate; the time dependence is, 
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I natme of the logarithmic creep law, 
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, of the form 

re is no limit to the amount of tran
wit h time, and the form 

( - bl /(b2 + 1)] (1 - t
b2

+
1

) 

b2 < -1 

'r11 tends to a finite limit with time. 
the creep strains at zero and one time 

;; ill the yalue of m with stress arc 
'l\t~iblc in the structural theory, but 

to complications. As two experiments 
nt stresses are required to calculate ;1 

111, [Inc! at least three arc required to 
lower-law dependence of strain rate 011 
and m. cannot be determined if 111 

:lpidly with stre,;s. 
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' r a range of stresse~, It and m can br 
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l'stimated from the exponent of Lhe powcr-I::tw 
deJ1rndenct of st rnin ra(r on . j r('~~, and from j hr 
IIlran n1llle of b,. Crur/en LH)o!)l rq>orted :\ 
:'Nirs of creep experiment" on C'n ITn rn 111:1 rhle 
:lIld Pennallt sa ncbtonr. 

The parameters of the fit of the law [eqnation 
4f1] to t.hese experiments arc t:tbulatrd ;):; a 
function of the percentage of the short-teqn 
failure stress in the unia.xial compre,,~ioll P, at 
\\"hich the expel'imrnt was conducted (Tahle 1). 
The fit was performed by fitting the straight 
litH' log (de/ dt) = log b, + b, log t by simple 
linear regression on the 3s~umption thM the 
limr:' at which the strain rates arc measufrd 
nre without elTor. 

All the experiments are !"atisfactorily described 
hy the power law of creep ahoye (equation 49) 
r Cl'llden, 1960). Scholz [1 9GS] has suggested 
that the true yalue of b, is -1. But llone of 
the experiments in Table 1 haye estimates of 
b, that are exactly -1. In two of the experi
ments .(on Pennant sandstone at 05% P, and 
on Carrara marble at 53% P,), the possibility 
that the true value of b. is -1 can be rejected 
!It the 1 % confidence leyel. 

In Figure 1, b, for the:;c experiments is 
plotted against stress. The strnin-harclening pa-

rmneters of Prnn:1llt sandstone do not, appear 
to he stre~" orpC'lldent, hilt there i" !I . i~nificanl 

decrell<'e of fl, for Carrara lI1arhle hf'l(l\\' iO~~ 

of the failltl'e st J'('~". 1.illrortun;]tcl~·, tlie eXJ1cri
ment at 53% p. showed only 10 microstrains 
creep in eight Cla~'5, :md experiments :It lower 
st re55r- would hm'e been be~'ond the acclt rac~' 
of t he apparatus used. 

III Firrure 2, thr 10l!arithm:i of thC' !"train rate:, 
in the experiments !l.t a time It arc plolted 
against the slJ'(,ss (on a logarithmic scale). Strain 
rales are, of course, most precisel~' drlermined 
by the regression at the mean of the 10garitlun8 
of the time;; of the obsen'atiolls [flold, 195~). 

The time h is the \\'eight('d mean of the mean~ 
of the logarithm;:: of the estimated times 01' 
obserl'!ltion of the strain rates in the experi
mellts. 

H the strain rates follo\\'ed a power-I a.\\' 
dependence on stres~, the data would plot on :I 

t might liDe in Figure 2. The Pennant sandstone 
data fall on at lea~t two separate st raight lin('s, 
one from experiments :1t 3.5% p. and below, and 
one for t.ho;:e aboye this ntllle. 

Because the strain-hardening parameters of 
the sandston~ expcrimetlts arc not significantly' 
different, the weighted mp:1n of the "illite!" of 

TABLE L Parameters of :Fit of Creep Law de/dt = bltb. to Experiments on Pennant Sandstone and 
Carrara :'Iarble 

%P, log b l b: dw RI 

Pennant sancltitollc 
15 1. 77 -0.91 LSO 719.1 
25 2.15 -0.93 1.95 250.5 
35 2,48 -0.97 1.50 269.3 
45 2.61 -1.01 1.31 77.7 
50 2.42 -0.91 2.57 478.2 
65 2.50 -0.86 2.09 607.0 
75 3.27 -0.98 2.18 687.8 
85 3.12 -0.94 2.21 180.3 

Cllrra!'a marble 
53 4.77 -2.11 3.03 256.9 
64 1.67 -1.22 1. 91 367.2 
70 0.31 -0.79 1.85 34.7 
77 2.11 -1.11 1.98 149.:3 
83 2.21 -1.02 1.16 415,4 
86 0.77 -0.87 2.51 51.9 

Xotes. 
log b, is the natul'3llogarithm of b l (b , is measured in microstrain.~ per minute). 
dw is the Durbin-Watson statistic [Durbin and Watson, 19511. 
10 is the weighting of the regression p:irnmelers. 
ubi and ub. are tbe standard deviations of b l and b j • 

.' 

W ub. ubi 

40 0.034 0.20 
13 0.0'>8 0.26 
30 0.0.')9 0.26 
11 0.050 0.11 
28 0.042 0.18 
29 0.03.5 0.18 
31 0.038 0.18 
25 0.070 0.35 

15 0.13 0.80 
24 0.063 0.29 

8 0.081 0.33 
48 0.091 0.10 
44 0.050 0.23 
9 0.098 0.59 
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Fig. 1. Plot of the value of the strain-hardening parameler b, (vertical axis) against the 
percentage of shorl-term fai lure slre s P, (horizonlal axis). Circles indicate Pennant sand
stone; squares indirate Carrara marble. 

b, for the experimeuls at loads of 3.5 tons and 
less can be 'u:::ed to write, from the structural 
t.heor)" 

(n - 2m)/(n - 2) = 0. 930 

The exponent of the power-law dependence of 
strain rate on stress can be determined by re
gressing the logarithms of the strain rates 
against the logarithms of the stresses. Tben, 

2n(m - l) / (n - 2) = 0. 58 

- 6 

• 
• - 2 

J 0 20 30 40 

These equations can be uniquely solved for 
nand m since the root n = 2 can always LJe 
discarded on physica l grounds. Solution gayc 
n = 8.3, m = 1.22; these values arc in the 
ranges suggestcd by the tbeory. 

Assuming that n, which measures tbe increasc 
in corrosion rate caused by stretching the min
eral lattic~, is a constant of tbe mineral and is 
not stress dependent, " alues of m can be calcu
lated for bigher loads. T hey are listed belo\\·. 

• 

• 
• • • 

• 

• • • 
• • • 

• 0 60 70 &0 901 0 0 

Fig. 2. Plot of the natural logarithm of the strain rate (vertical axis) , in microstrains per 
minute, against the percentage of short-term failure stress (horizonal axis) logarithmic sca le. 
Circles indicate Pennant sandstone; squares indicate Carrara marble. 
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45 
50 
65 
75 
85 

1IL 

0 .97 
1.24 
l.44 
1:06 
1.22 

• 
2n(m - 1)/(n -~2) ; 

-0.079 
0.63 
1.16 
0.16 
0.58 

Since m is not :1 constant above 35% of the 
~hort-tcrm failure load, the value of 2n(m - 1)/ 
(/I - 2) does not reprefent the exponent of the 
power-law dependence of strain rate on stress. 
A rough value of this exponent is about 1.2 
[Gruden, 1969]. Therefore, at about a third of 
the failure strength, the exponent approximately 
cloubles. Evans [1958, p. 182J reported a similar 
phenomenon in creep experiments on concrete. 

The data on the creep of Carrara marble are 
complicated by the stress dependence of the 
strain-hardening parameter b,. 

Another problem is the value of b2 from the 
Carrara marble experiment at 53% of the fail
ure load. From this, 

(n - 2m)/(n - 2) = 2.11 

Inspection shows that if m = 0 and n = 10 
the value of the right-hand side is 1.25. The 
lowest reasonable estimate of b2 for this experi
ment is about ~ 1.8. Thus, either n must be 
about four with m zero, or m must be negative. 

Consider the possibility that m is nega.tive. 
This implies that the number of cracks increases 
with the length of the crack. At loa.ds above 
64% of the failure load, where shorter cracks 
will be making their contribution to creep, 
there is no need to suppose that 1n is negative, 
and the number of cracks can then be supposed 
to decrease with their length. Thus the crack
length distribution has a maximum grouped 
around the cracks that propagate early in 
transient-creep experiments at about 64% of 
the failure load. 

If the experiments on Carrara marble at 64% 
of the failure load and below are omitted from 
the analysis, b. can reasona.bly be supposed to 
be constant. The reduced body of data can, 
again, be examined by regressing logarithms of 
the strain rates against the logarithms of the 
loads. The results are 

2n( m - l) / (n - 2) = 2.36 

(n - 2m)/(n - 2) = 0.976 

The equations lead to estimates of n as 98.5 and 

1n as 2.16. The estimate of n is large. However, 
little con.fidence can be placed in the mean value 
of the strain-hardening parameter b.; lower 
values of b. would lead to considerably lower 
estimates of n. 

CONcr,usIONS 

The creep data thus show distinctly different 
patterns of behavior for Penna.nt sandstone 
and Carrara marble. For Pennant sandstone, 
the value of b. is just greater than min-us one, 
and the stress dependence of the strain rates is 
linear to a crude approximation. Carrara marble 
shows a st,ress-dependent, strain-hardening ' pa
mmeter, and the strain rates are roughly pro-

, portional to the square of the stress. 
The structural theory attributes the differ

ence in behavior to differing corrosion reac
tions in silicates and carbonates resulting in 
different values of n and to differing crack
length distributions. The length distribution. of 
cracks in the two rock types can be derived 
from the calculated values of m, 

The most prononnced difference between the 
two distributions is the relative deficiency of 
the marble in long and short cracks; the crack
length distribution has a maximum. Brace [1964, 
p. 153J suggested that the maximum crack 
length in a rock sample was a function of the 
grain-size distribution. Thus the clustering of 
the size distribution of the cracks about a 
broad maximum would appear a consequence 
of the equigranular teJo.-t.ure of the marble de
scribed by Ramez and Murrell [1964J . 
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